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The joint probability distributions for three structure factors whose subscripts add to zero is expressed 
in an exponential form for space groups P 1 and PT. These space groups serve as examples of the non- 
centrosymmetric and centrosymmetric cases, respectively. The exponential form effects considerably 
improved convergence properties although the behavior remains asymptotic. For the range of values of 
the normalized structure-factor magnitudes ordinarily obtained in experiment, the exponential forms 
are quite accurate. However, the accuracy is least for the largest possible values of the structure-factor 
magnitudes. By introducing a result from the inequality theory, which is most definitive when these 
magnitudes are largest, it is possible to alter the functional form of the exponential series to obtain joint 
probability distribution functions which are accurate over the entire range of the structure-factor magni- 
tudes. Several probability measures of interest such as expected values and the probability that a struc- 
ture factor has a positive sign are derived from the joint distribution functions. 

Introduction 

The joint probability distribution (Cram6r, 1971, pp. 
154 ff.) is a mathematical device for describing the 
dependent variation of several variates. This type of 
function is well suited for developing useful relation- 
ships among the crystal structure factors, the variates, 
which are mutually dependent upon the atomic coor- 
dinates, and was introduced into crystallographic the- 
ory for this purpose. It was recognized early that the 
simple inequality relationships which showed promise 
as aids in phase determination had, in fact, additional 
significance in the probability sense which extended 
beyond the range in which the inequalities held strictly. 
It was therefore apparent that the investigation of the 
probabilistic aspects of the inequality relationships 
would extend the range of their usefulness. 

A consequence of the application of the joint prob- 
ability distribution to structure factors was the deriva- 
tion of certain phase determining formulas whose va- 
lidity could be evaluated by probability measures. Some 
of these formulas corresponded to previous, explicitly 
stated inequalities and others were new. For example, 
the ~t formula (Hauptman & Karle, 1953a) cor- 
responds to certain inequalities of Harker & Kasper 
(1948, p. 72) and the ~z formula (Hauptman & 
Karle, 1953a) corresponds to inequality (34) of Karle 
& Hauptman (1950). Formulas such as the Y.3 
type (Hauptman & Karle, 1953) also have correspon- 
dences in the inequality theory. The B3.0 formula 
(Hauptman & Karle, 1958; Karle & Hauptman, 1958) 
appeared as a generalization of a formula already ob- 
tained from an analysis of the superposition of Patter- 
son maps (Vaughan, 1958) and also by algebraic means 
(Hauptman & Karle, 1957; Karle & Hauptman, 1957). 

The joint probability distributions also afforded a 
measure of the validity of the phase-determining for- 

mulas, but because they were expressed in series form 
the measures proposed were not as convenient or ac- 
curate to use as those obtained from the central limit 
theorem. By comparing the series from the joint distri- 
bution for centrosymmetric crystals (Hauptman & 
Karle, 1953a) and for non-centrosymmetric ones 
(Karle & Hauptman, 1956) with the results from the 
central limit theorem (Woolfson, 1954; Cochran & 
Woolfson, 1955; Cochran, 1955), it is apparent that 
the expressions become comparable if a manipulation 
whichplaces an appropriate term, x, in the series into 
exponential form is employed, i.e. if the relation 1 + x 
~exp (x) is used. This point is of more than passing 
interest, since it will be seen that the transformation of 
the entire series expansions for the joint probability 
distributions to an exponential form can improve 
significantly their accuracy and interpretation. The ad- 
vantage of the exponential form has been described by 
Bertaut (1960) for centrosymmetric crystals, who noted 
that in this form series terms of order N -m/2, where 
N is the number of atoms in the unit cell. are associated 
with structure-factor polynomials whose highest degree 
is m + 2. This also holds for non-centrosymmetric ones. 
It will be seen that this improves the convergence (aside 
from numerical coefficients) by a factor of the order of 
IEI zm-2, where IEI represents a normalized structure 
factor magnitude. 

As an additional illustration of the probability 
aspects of the inequalities, it has recently been shown 
(Karle, 1971) that probability measures with improved 
expressions for the variance applicable to the ~,  
and tangent formulas can be read directly from a form 
of the inequality theory given by expression (30) of 
Karle & Hauptman (1950) using the central limit 
theorem. Similar probability measures and additional 
ones to be associated with the inequalities have also 
been derived by Tsoucaris (1970). 
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After the initial applications of the joint probability 
distribution to the problem of phase determination 
(Hauptman & Karle, 1953a; Karle & Hauptman, 1956) 
several authors (Klug, 1958; Naya, Nitta & Oda, 1964, 
1965) discussed the higher-order terms in the series ex- 
pansion, giving particular emphasis to the possibility 
of increased accuracy. This possibility may be rather 
elusive for the series expansion when statistical infor- 
mation involving the larger normalized structure-fac- 
tor magnitudes is sought. The situation is not neces- 
sarily improved by increasing the number of higher- 
order terms considered. The reason for this is that the 
series are asymptotic, i.e. they do not ultimately con- 
verge as the number of terms increases without limit, 
but rather approach the true value of the function be- 
ing represented up to some term, after which they 
diverge. In this context, it is often both prudent and 
necessary in problems of interest to crystallography in- 
volving the largest normalized structure-factor magni- 
tudes to accept no more terms in the series than the first 
one in which the quantity of interest appears. 

Because of the varying mathematical terminologies 
and the alternative book-keeping of the moment cal- 
culations employed by the various authors, it might 
appear on a first reading of the papers on the joint 
probability distribution that the formulation of the 
problem and the results differ from one to the other. 
It is worth noting that in each case the formulation of 
the joint probability is the same and the statistical 
model involving the uniform distribution of atomic co- 
ordinates in the unit cell is the same. An exception is 
the derivation of the B3.0 formula in which the inde- 
pendent random variable is assumed to be uniformly 
distributed over reciprocal space. A further develop- 
ment of this latter approach has been recently presented 
by Hauptman (1971). The identity of the formulation 
is reflected in the identity of the results, except for the 
number of terms recorded. For example, the results 
for centrosymmetric crystals are characteristically ex- 
pressed in terms of the Hermite polynomials. This may 
be seen in the results of Hauptman & Karle (1953a) of 
Bertaut (1955), of Klug (1958) and those of Naya, 
Nitta & Oda (1964). They also appear in the probability 
distribution for a single centrosymmetric structure fac- 
tor (Karle & Hauptman, 1953a). For non-centrosym- 
metric crystals, the results are characteristically ex- 
pressed in terms of associated Laguerre polynomials, 
as can be seen for the joint distribution appropriate to 
the real and imaginary parts of a single structure fac- 
tor (Hauptman & Karle, 1953b). They are also con- 
tained in the formalism of Bertaut (1956) of Karle & 
Hauptman (1956), and of Naya, Nitta & Oda (1965). 

As mentioned, the joint probability distribution can 
be expressed as an exponential function in which the 
argument of the function is a series in negative powers 
of the number of atoms in the unit cell, similar to the 
usual series expression. The series in the exponential 
form are still asymptotic in character, but their asymp- 
totic convergence properties are considerably im- 

proved. This affords the opportunity to obtain im- 
proved estimates for statistical quantities such as ex- 
pected values and variances. Of particular interest are 
the invariants Oh--~0k--~h-k and the cosines of these 
invariants because of their importance in phase deter- 
mining procedures. In attempting to derive a general 
expression for the expected value of a cosine invariant, 
COS ((Ph - -  (/)k - -  ( /9h-  k ) ,  from the joint distribution, it can- 
not be expected that an asymptotic series would afford 
a function which would be valid for the largest values 
of the normalized structure factor magnitudes. Never- 
theless, it is probable that a strong clue regarding the 
form of this function can be obtained from the joint 
distribution. Coupling this information with informa- 
tion obtainable from the low-order inequalities, 
namely, relations which are strictly valid only for the 
very largest values of the normalized structure-factor 
magnitudes, can conceivably provide a reliable indica- 
tion regarding the appropriate functional form for the 
desired statistical quantity. Thus information from the 
joint distribution, whose asymptotic behavior generates 
a deterioration of accuracy when applied to the largest 
normalized structure-factor magnitudes, would be 
joined to information from the inequality theory which 
behaves best when applied to these large structure fac- 
tor magnitudes. 

The series expansions of the joint distribution for 
Eh, E_u,E_h+ k for centrosymmetric crystals and for 
IEhl, IEkl, IEh-kl, ~0h, ~0~,~0h_k for noncentrosymmetric 
ones have been derived to the N -5/2 term (Naya, Nitta 
& Oda, 1964, 1965), where N is the number of atoms in 
the unit cell. The exponential forms of these distribu- 
tions for the equal-atom case, their properties and rela- 
tion to statistical quantities of interest will be described 
with a view toward obtaining more precise information 
regarding the cosine invariants. Effectively, this means 
making more accurate use of the known values for the 
normalized structure-factor magnitudes associated with 
the ~0h, ~0k and fPh-k. In terms of reducing the degree of 
the polynomials in IEI associated with the N -m/2 term 
by IEI 2m-2, it is seen when m = 5 ,  polynomials in IEl 
are reduced by [El 8, a considerable reduction when the 
IEI are large. 

Exponential form for joint distribution noncentro- 
symmetric reflections (hx + h2 + h3 = 0) 

The joint probability distribution function for three 
complex-valued normalized structure factors, E1 = Eh~, 
E2 = Eh2, E3 = Eh3, on the assumption that the atomic 
coordinates are random variables which are uniformly 
and independently distributed, is considered now for 
the case of equal atoms in space group P 1. Formalisms 
for obtaining joint distribution functions for noncen- 
trosymmetric reflections have been described (Haupt- 
man & Karle, 1953b; Bertaut, 1956; Karle & Haupt- 
man, 1956; Naya, Nitta & Oda, 1965). The joint distri- 
bution function for El, E2, E3 may be written in the 
exponential form 



3 3 6 4  E X P O N E N T I A L  F O R M  OF J O I N T  P R O B A B I L I T Y  D I S T R I B U T I O N  

1 
P(IEd, IE2I, IE31, ~0~,~02,~03): 7 IE~E2E31 

x exp ( - l e d  2 -  IEzl 2 -  IEzl 2) 

x exp ~i72--IExEzE3I 1 + -N ([Ell 2 + IE2[ 2 

1 ([IEd4+(ll/4)IE~E21, + [g312- 3) + -~5  

-(9/2)1E~1 z +eye.]+ 2) }cos (~o~ + ~02 + ~3) 

5 
4N 2 [ExEzE31 z cos 2 ((p~ + ~02+ q~3) 

1 {[(1/4)lEd 4 + [E~EzIZ21ElI2 +cyc.]+ 5/2} 
N 

1 
NZ {[(5/36)1Ed 6 + IEd4IE2[ z + IEIIZIEzl 4 + cyc.] 

+ 4IE~EzE3IZ-[(9/8)IEd 4 

+ 41E~EzI'-(3/2)IEd 2 + cyc.] + 5/8} + . . .  ] o 

.I 
(1) 

By expanding the second exponential function on the 
the right side, equation (1) is seen to be identical with 
equation (67) of Naya, Nitta & Oda (1965) for the case 
of equal atoms (the coefficient of the entire Z4Z5 term 
should be ¼, i.e. the 2 should be replaced by ¼, and that 
of the Z~Z5 term should be -}, i.e. the 1 should be re- 
placed by ~-). The initial factor IEIE2E3I of equation (1) 
is understood to be inserted into the latter equation. 

An expected value of considerable practical impor- 
tance is the expected value of the cosine invariant, 
cos (~01+~02+~03), given the known values of IExl, [E21, 
IE31. This circumstance is the one commonly met in 
practice in which the magnitudes of the structure fac- 
tors are known, but the phases are not. In order to de- 
termine this expected value, the conditional distribu- 
tion of the sum qgl-lt-q)2--~-(/93 given [ExI, IEz[ and IE3I 
must be obtained. 

If we define 

~123 = ~01 -[- ~02 -1- ~93, (2) 

the desired conditional distribution P 1 ( ~ 1 2 3 ;  [El i  , [E2[ , 
[E3[) is obtained from (1) by fixing the values of [Eli, 
[E2[ and lEa[ and renormalizing. This gives 

P1(~1~3; IE, I, lEvi, IE~[ -~ K~ 

x exp [ ~ l / z  ]E1E2Ea[p([EI[, [E2[,]Ea]) 

' 1 x cos q5123- ~ T  [EIEzE3[ 2 cos 2cig~123 , (3) 

where Kx, the normalizing constant, is found to be 

[ [ 2IE~EzE3IP .... 
K I =  2~I0 [ \ -N m ] 

5rclEiE2E31 z 21EiE2E3lp -1 
- 2N~2 12( N1/2 ) ]  , ( 4 )  

the I, are Bessel functions of imaginary argument and 

1 
P=p([EI[, ]E21, IE31)-- 1 + ~ -  (IExl z + IE212 + IE312- 3) 

1 
+ - ~ -  ([[Ex[ 4 +(11/4)[ExE212-(9/2lgxl 2 + cyc.] + 2) 

(5) 
o r  

p =  1 - ( 3 / N ) + ( 2 / N 2 ) +  lUll 2 + IU21' + IU312 

+[IUxla+(ll/4)IUxU212-(9/2N)IUll 2 +cyc.] .  (6) 

The expected value for cos ~123 given IEll, IE21, IE31, 
is obtained from 

1 
2rt 

(cos ~x23)~ cos 05123Pl(~x23;IElI, IE21,1E31)d~23. 
~ 0  

(7) 
Evaluation of equation (7) gives 

(COS ~123)  '~ 

1 5[EIE2Eal2 ~ Ii(w) 51E1E2E312 I3(w) 
8N 2 -] ) 0 ( ~  8N 2 10(w) 

1-- 5[EIE2E312)~B~) 
4N z lo(w)- (8) 

where 
2[EIEzE3lP 

w -  N1/2 (9) 

The expected value given in equation (8) is defined as 
far as the N -5/2 term, similar to the probability distri- 
bution (3) from which it was derived. 

The probability distribution functions (1) and (3) 
and the expected value for cos ((Pl+(P2+(P3) in (8) 
should afford good accuracy for the magnitudes of IEI 
normally encountered in crystals. However, it is ap- 
parent from examining these expressions that since the 
maximum value for IE[ is N 1/2, though very rarely 
closely attained, the accuracy can deteriorate for very 
large [El values. It is understood that accuracy in cal- 
culating asymptotic series is optimized by employing 
the series up to and including the last converging term, 
when possible, and ignoring the remaining ones. In the 
polynomial p, equation (5), the degree of the products 
of [El associated with N 'n/2 is in, rather than m + 2  
which occurs in other terms in the probability expres- 
sions. The convergence properties ofp should be satis- 
factory for most structures of interest. 

By altering the probability function (3) according to 
a suggestive indication arising from the inequality 
theory, it is possible to obtain a probability function 
which is quite accurate for all possible values of the 
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IEI. The inequality of interest is the one of third order 
(Karle & Hauptman, 1950), 

1 U_R U-h 
Uk 1 U-h+l, >0  (10) 
Uh Uh-k 1 

which, when expanded, can be written 

IUhl z + I U~I'~ + I U~- ~12-1 
cos (¢ , , -  c k -  Ch-l,) ---- (1 1) 

2lUhUkUh-kl 

This inequality (11) affords an insight into how the 
large values of the I UI impose a constraint on the co- 
sine invariant. It is apparent, for example, that the 
cosine invariant is positive if I Uhl z + I Ukl z + I Uh-kl z > 1 
where each IUI >0. The maximum value of the right 
side of (11) is unity. This is, of course, attained when 
each I f l - -  1, its maximum value. However, in the con- 
text of the inequality, the maximum value is more 
easily attained. For example if one of the three I UI-- 1, 
the other two must be equal and the right side then is 
equal to unity. Unequal values for the other two I UI 
would violate the inequality. 

The polynomial in equation (5) is now approximated 
for modest values of IUI=E/N m, i.e. I f l  <0.2, and 
moderately large N, i.e. N> 100, with 

1 
p _  . (12) 

1 - I U a l Z - l U z l Z - l U ~ l  ~ 

If this expression for p were substituted into equation 
(3) and higher order terms were neglected, the exponen- 
tial in (3) would become 

[ 2IE1EzE31 
COS tP123]. (13) exp t Na/Z(1 _ i udz_ l fdZ l{J312  ) 

Although the denominator of the argument of (13) is 
satisfactory for small values for the I UI, it is evidently 
quite unsatisfactory for the larger values since it ap- 
proaches a minimum value of - -2N ~/2 instead of the 
value of zero, the latter implying certainty or zero var- 
iance to be associated with the largest values for the 
IUI. 

Recalling that the right side of (11) approaches unity 
as the I UI approach their maximum value, we consider 
taking one minus this function to find a more appro- 
priate function for the denominator of the argument 
of (13). This becomes 

[1-IghlZ+lUklZ+lUh- 'lZ--1 -a 
21UhgkUh-RI ] 

21Uh Uk gh-  kl . . . . . . . . . . .  . 
l +21ghgkgh_kl- - lgde-- lgkl  2 Igh--d 2 

(14) 

The observation that the denominator of (14) ap- 
proaches zero for the largest values of IUI, while the 
term 21UhURUh-kl has little effect for small values of 
IUI and a comparison with the argument of (13) sug- 

gest that a new, accurate probability distribution func- 
tion may be written, 

where 

and 

P2(q512a;IE~I,IEzI,IE31)~ g2 
r 21EaE2E31 ] 

× e x p [  Nl/2ql cos@a2a , i = l o r 2  (15) 

Kz= [2rclo ( 2IEIEzE3I -1 
N~/Zq, )] 

(16) 

qI= l +21U1U2U31-1UalZ-lU212-1U31 z. (17) 

An alternative form for qa which is a good approxima- 
tion for crystallographic data is 

q2=(1 - lU l l  2) (1-IU212) ( 1 -  I U312). (18) 

The desired expression for the expected value of the 
cosine invariant from P2 can be obtained from a rela- 
tion similar to equation (7), giving 

11 ( 2IEaE2E3I Na/2qi ) 
(cos (¢a+¢2+¢3))  "~ 21EaE2E31 , i=  1 or 2 .  

lo(  ....... N~/Zq, ) (19) 

The preferable form for q can be determined by nu- 
merical tests. 

The probablity distribution (1) modified in a com- 
parable fashion to (15) can also express the modified 
probability distribution, P3. for a single phase, ¢ .  
given ¢2, Ca, IEa[, tEzl, IE31 or the modified probability 
distribution, P4, for the sum of two phases ¢2+¢3, 
given Ca, I&l, IEzl, IE31. In fact, since the range of vari- 
ation is - rc < ¢ < re, where ¢ represents Ca or tp2 + ¢3, 
P3 and P4 are both equal to P2, each having the same 
value for the normalizing constant K2. We may write 

Pz(q~a23; IEal, led, [E3I)= e3(¢a ;¢2, ¢3, IEII, IE2], IE3I) 

=ea(¢2 +q~3;¢a, lEll, lEzl,lE3l) . (20) 

These probability formulas can be compared to that 
of Cochran [1955, equation (7)] which is obtained when 
the qi = 1 or, effectively, when the I U, I are small. 

The alteration of P3 to obtain the probability distri- 
bution for Ca, given many sets of ¢2, ¢3, IE21, IE3[ satis- 
fying ha + h2 + h3 = 0, can be obtained by multiplying 
the individual probability distributions of type P3 to- 
gether, assuming that the distributions are independent, 
and renormalizing. This type of manipulation to give 
a probability distribution and variance measure based 
on Cochran's formula appears in equations (3.25) and 
(3.33)* respectively, of Karle & Karle (1966). These 
two formulas, along with additional mathematical ex- 
pressions in sections 3.2, 3.3 and 3.4 of the latter refer- 
ence, can be quite readily altered to be consistent with 

* N o t e  tha t  the plus sign be fo re  the last t e rm o f  this f o r m u l a  
s h o u l d  be minus .  H o w e v e r ,  Fig.  2 was  ca l cu l a t ed  co r rec t ly .  

A C 28B - 17 
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the results of this paper by simply redefining the symbol 
x of equation (3.20) by dividing by q~ to give 

I¢(h,k)=20.30.f 3/21EhEkEr,_kl/q, (21) 

where we identify h~ = h, !12 = - k  and h 3 = - h +  k. For 
equal atoms, 0"30"2 3/2 = N 1/2. 

A probability distribution for ~0h has recently been 
derived using the central limit theorem (Karle, 1971) 
which can be compared to (15) and (18). It is the same 
except for the first factor in (18) which is replaced by 
unity. From the point of view of the central limit theor- 
em, expressions (17) and (18) are proportional to the 
variance of the real and imaginary parts of a structure 
factor Ehl, given Eh2 and E h 3  where hl+hz+h3=0.  
This matter is discussed further in the Appendix where 
it is shown that the expression for the variance used 
previously (Karle, 1971), based on the square of the 
radius of a bounding circle in the complex plane for 
the unitary structure factor Uh, is somewhat more con- 
servative than equation (17) and its generalizations. 

Exponential form for joint distribution centro- 
symmetric reflections (h~ + h2 + h~ = 0) 

The joint probability distribution function for three 
normalized structure factors, E~ =Ehp E2 = E  h2, E3= 
Eh3, on the assumption that the atomic coordinates are 
random variables which are uniformly and indepen- 
dently distributed, is considered for the case of equal 
atoms in space group PT. Formalisms for obtaining 
joint distribution functions for centrosymmetric re- 
flections have been described (Hauptman & Karle, 
1953; Bertaut, 1955; Klug, 1958; Naya, Nitta & Oda, 
1964). Bertaut (1960) has discussed several examples of 
the exponential form for the joint distribution for cen- 
trosymmetric reflections. The exponential form of the 
joint distribution for Ex, Ez, E3 valid to the N -s/2 term 
may be written: 

1 
-~(Ex + Ez z + E])] P(E~,Ez, Ea)- (2n)3/z exp [ ' 2 

[-~' { 1 (EZ + EZ + E]-4)  xexp /2 1+ 

1 + -~-z [E~ +(ll/4)E2E2-6E2 +cyc.] 

1 
+ 11/4 EtE2Es---ff{[(1/8)E4+(1/2)E~E~ 

1 {[(5/72)E6 -(5/4)E~ +cyc.]+ 13/8)- ~ -  

+ (1/2)E4E 2 + (1/2)E2E 4 + (21/8)E2E2E 2 

-(35/48)E4-(21/8)E2E 2 + (9/8)E~ + cyc.] 

+ 5 / 8 } . . . ] .  (22) 

By expanding the second exponential function on the 
right side, equation (22) is seen to be identical with 
equation (II1-2) of Naya, Nitta & Oda (1964). 

Of interest are questions which arise in practice, i.e. 
the probability that the sign of E, EzEa is positive, given 
IE, I, IE21 and IE3[, or the probability that the sign of E1 
is positive, given IEal, E2 and E3. Since the analyses 
leading to the desired results are quite similar, the 
steps will be outlined for the first case and only the 
answer will be written for the second. The following 
algebra is employed: 

P+ + P_ = 1 (23) 

P+ =(P+/P_)/[1 +(P+/P_)] , (24) 

where P+ is the probability that some quantity is posi- 
tive. The ratio of the probability that a quantity x is 
positive, P+(x), to the probability that it is negative, 
P_(x), is given by the ratio of the values of the prob- 
ability distribution function for the positive and nega- 
tive values of x. If the probability distribution function, 
P, is proportional to an exponential function of x, e.g. 
eoze "x, then P+(x)/P_(x)=exp (alxl)/exp ( - a l x l ) =  
exp (2alxl) and, employing (24) it follows that 

P+(x)=exp (2alxl)/[1 +exp (2alxl)] (25) 
and 

P+ (x) = ½ + ½ tanh (alxl). (26) 

The probability that the sign of E~EzEa is plus, given 
IE, I, IE21 and IE3I, P+(EIEzE3;IEII, IEzI, IE31), becomes 
from (22) and (26), 

+ (EIE2E3;IEt[, ]E2I, [E31)= ½ + ½ tanh Nlf/2 p~IE, E2E3I P 

(27) 
where 

1 (E z + EZ + E3Z_4) p ~ = l +  ~- 

1 
+ ~ {[E4+(ll/4)EZxE~-6E2x+cyc.]+ 11/4} (28) 

o r  

p l =  1 - 4 / N +  11/4N 2 + U~ + W~ + W~ 

+[U4+(ll/4)UIU22 z_(6/N)U~+cyc.]. (29) 

The probability that the sign of E~ is positive, given 
IExl, Ez and Ea, P+(Ex;IE~I,E2,E3), is 

1 
P+(E~;IE~I,E2,Ea)=½+½ t a n h ~ - i p ,  lE, lE2E3. (30) 

The polynomial pt, equation (28), should have good 
convergence properties for most crystals of interest. 

The question again arises as to whether a suitable 
alteration can be made on the polynomial p~, occurring 
as part of the coefficient of E~E2E3 in (22), in order to 
obtain accurate measures of P+ throughout the pos- 
sible range of values for the IEI. Drawing again on the 
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third-order inequality (10), specialized to the real struc- 
ture factors of centrosymmetric crystals, (11) is re- 
placed by 

u~ + vf, + u ~ _ k -  1 
Sh,k ----- 2 i - U h U k f h - k l  ' (31) 

where Sh.k is a two-valued function having the values 
+ 1, and representing the sign of UhUkUh-k. This in- 
equality has been previously discussed by Klug (1958) 
who noted that the sign would have to be positive if 
UZh+U2+UZh_k>I. There is a further restriction 
which is somewhat less apparent, namely, there are 
combinations of values for I U hi, I Ukl and I Uh-kl when 
UhZ ~, U~, + UZh_k > 0"75 for which Sh. k must be + 1 
This occurs because for certain combinations of values 
for I Uhl, I fkl and I Uh-kl, the magnitude of the denom- 
inator of (31) exceeds that of the numerator. Under 
such circumstances, Sh.r, = -  1 would violate the in- 
equality. An example is lUll = I Uh-kl =0"51. 

By using arguments which are similar to those ap- 
plied to the noncentrosymmetric case, it is suggested 
that good accuracy may be obtained over the full range 
of possible values for the IEI if q~(i= 1 or 2), defined in 
equations (17) and (18), were to replace p~ in equations 
(27) and (30). For example, equation (30) would be re- 
placed by 

IEllEzE3 
P+(E~;IE~I,Ez, E3) =~-2-+~ tanh ---N~TZq,--, i =  1 or 2 .  

(32) 

When there are several sets of known Eh2 and Eh3 such 
that h~ + h2 + h3 = 0, equation (30) becomes 

P+(Eh) = ½ +  1 tanh 
IEhl Z (EkEh-k/q,) 

k 

• ) v - - i / 2  
_ _ _ ,  i=1  o r 2 ,  

(33) 

where h~=h, h z = k  and h 3 = h - k .  It is seen that  the 
hyperbolic tangent formula (33) is the same as the one 
commonly used (Woolfson, 1954; Cochran & Woolf- 
son, 1955) if q~ = 1. 

Numerical tests 

Some numerical tests have been carried out in order to 
compare several formulas for the expected value of the 
cosine invariants and to obtain an estimate of their 
average error. Results are shown in Table 1 for a ran- 
dom structure in space group P 1 composed of 50 equal 
atoms and in Table 2 for solaphyllidine.CH3OH 
(Karle, 1970) which crystallizes in space group P2~2121 
with 148 almost equal nonhydrogen atoms and 204 
hydrogen atoms in the unit cell. Examination of the 
tables shows the distinction between the calculated 
averages of expected values obtained when qi is equal 
to ql or q2 or when it is replaced by unity. The latter 
corresponds to using only the first term in the joint 
distribution function. The difference between the use 
of qt or qz is small. They both lead to higher results for 
the expected values than when qt is replaced by unity. 
This, of course, becomes more significant as the 
IExE2E3I increase in value. 

Additional calculations of the expected values were 
performed which were based on the higher order terms 

Table 1. Calculations of the average of a number of cosine invariants for 50-atom random structure in space 
group P1 using equation (19) 

qt in Number of Average 
Sample [(cos qhea)obs],v [(cos ~23)c,,c]av equation (19)  contributions error 
AI 1 0.730 0.678 1 0.28 
IEI > 1.7 0.730 0.745 ql 540 0.25 

0.730 0.754 qz 0.25 
A11 0-789 0.750 1 0.23 
IEI > 1.85 0.789 0.811 ql 96 0.21 

0.789 0-819 q2 0.20 
A 11 0.772 0-805 1 0.22 
IEI > 2.0 0-772 0.856 q~ 21 0.20 

0.772 0.866 q2 0.19 

Table 2. Calculation of the average of a number of cosine invariants for solaphyllidine, having 148 almost 
equal nonhydrogen atoms in the unit cell of  space group P212121, using equation (19) 

qt in Number of Average 
Sample [(cos ~123)obs]av [(COS (~123)ealc]av equation ( 1 9 )  contributions error 

A11 0.570 0.540 1 0.43 
IEI > 1.7 0.570 0.564 ql 254 0.42 

0.570 0.565 qz 0.42 
All  0.626 0.599 1 0.37 
IEI > 1.85 0.626 0.624 qt 109 0.36 

0.626 0.625 q2 0.36 
A11 0.663 0.663 1 0.34 
IEI > 2.0 0.663 0.688 ql 44 0.33 

0.663 0.690 q2 0.33 

A C 2 8 B  - 17"  
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in equation (1), e.g. as given by equation (8). For the 
present examples no significant differences were ob- 
tained from the results given by equation (19). 

The third test in Table 1 shows poorer agreement 
between the observed and calculated averages of the 
cosine invariants than the first two. It is seen that only 
21 invariants with all [El > 2.0 were used in the com- 
parison, a rather small sample. Nevertheless, as shown 
in the last column of Table 1, the average deviation be- 
tween the observed values for the individual invariants 
and the expected values calculated from equation (19) 
is small. 

Regularities in a structure could affect, particularly, 
the low-order reflections and could cause a discrepancy 
between the average of the observed values for the co- 
sine invariants and the theoretical estimates. 

Concluding remarks 

A main feature of the exponential form for the joint 
probability distribution function is its improved con- 
vergence properties and the opportunity this affords 
to obtain accurate measures of a variety of statistical 
properties. An effect of this is to enhance the expected 
value of a cosine invariant and the probability that the 
sign of a centrosymmetric reflection is plus compared 
to earlier measures. With the aid of inequality theory, 
these statistical measures are expressed in terms of the 
qt which replace the polynomials p and Pl, equations 
(19), (32) and (33). The q~ attain a maximum value of 
unity only when IUll=lU2l=lUa[=O and decrease 
toward zero as the values of the I U] increase. 

In the mathematical analysis presented, only equal 
atoms were considered. A manuscript is in preparation 
in which the mathematical analysis is applied to the 
case of unequal atoms. 

I wish to express my thanks to Mr Stephen Brenner 
who programmed and carried out the numerical tests. 
I also wish to thank Dr R. Gilardi for verifying the co- 
efficients in the joint probability distributions, equa- 
tions (1) and (22). 

APPENDIX 
Geometric interpretation of formula (17) 

The diagram in Fig. 1 represents a bounding circle of 
radius r centered at J in the complex plane for the 
unitary structure factor Uh of known magnitude. This 
is the geometric representation of inequality (30) of 
Karle & Hauptman (1950), 

IVh-gl  <r (A1) 

in which the elements of the determinants forming J 
and r are here defined as unitary structure factors. Ex- 
am/nation of Fig. 1 shows that the range of possible 
values for the phase of Uh is 2U. The equation of the 
bounding circle is 

(x-- x~) 2 +(Y--y~)2=r2 (A2) 

where the real and imaginary parts of O are xe and y~ 
respectively. The equation of the circle formed by the 
magnitude I Uhl which intersects the bounding circle at 
points E and G is 

x 2 + y2= i Uhl z. (A3) 

From (A2) and (A3), the equation for the line contain- 
ing the points of intersection E and G is 

2x~x+2y,sy= I Uh[2 + [•[2_ 1.2. (A4) 

The equation of the line perpendicular to the segment 
EG and passing through the origin at O and the points 
F and J is 

x = x~y/y~. (A 5) 

Equations (A4) and (A5) intersect at point F. Solving 
for the coordinates of F can lead readily to the length 
of the segment OF and, using this, cos ~ is found to be 

I Uhl + [~l 2 -  r 2 
cos u-- 2[ Uh6[ (A6) 

Expecting that the variance of the real and imaginary 
parts of Eh should be expressible in terms of the angle 
~, use is made of the relation 1 - c o s  ~ = 2 sin 2 ~/2 and 
equation (A6) to make the reasonable proposal that 

2 x Variance=4lUhfi[ sin 2 o¢/2=r2-(lUn[- 161) 2 . (A7) 

Note that Fig. 1 implies that 0 < 7/2 < n/2. 
It is of interest to examine the properties of the var- 

iance formula (A7). An alternative interpretation of 
4[ Uhfi[ sin 2 ~/2 can be made by referring to Fig. 1 and 
noting that it is equal to the products of the lengths of 
the two chords AB and CD. Further examination of 
Fig. 1 shows that when [U hi is of such a length as to 

J 

Fig. 1. Bounding circle of radius r centered at J in the complex 
plane for the unitary structure factor Ua. 
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Fig. 2. Circle of radius I Uhl centered at the origin is contained 
within the bounding circle of radius r centered at 6 in the 
complex plane when I Uh] < r-- 161. 

just  touch the bounding circle either at points H or 3', 
e = 0  and there is no uncertainty concerning the value 
of  the phase ~0h. The variance given by (A7) is equal to 
zero under these circumstances. 

When l U hi = 6, the variance is r2/2, the quanti ty sug- 
gested in a previous paper (Karle, 1971). Equation (A7) 
suggests that  the variance varies between zero and r2/2, 
depending upon the value of  IUhl. 

If  the bounding circle generated by (A 1) is based on 
a third-order  determinant,  (~=UkUh-k and r = ( 1 -  
[ Uk[2)I/2(1 --[ Uh_k[2) 1/2. Substitution of  these functions 
into (A7) gives equation (17). 

There is a case for which the diagram in Fig. 1 does 
not apply. This occurs when the circle of radius I Uhl is 
contained within the bounding circle (Fig. 2), satisfying 

Ighl < r - [ J I  • (A8) 

Under  these circumstances, the right side of  (A7) is 

still retained to represent the variance, namely, 

2 x Variance = r 2 - (I Uh] --]JI) 2. (A9) 

When equations (17) and (18) are applied to the 
centrosymmetric  case, e.g. when the q~ replace Pl in 
equations (28) and (30), they represent the variance 
and not twice the variance of  a structure factor. The 
same would apply to (A9), the generalization of  equa- 
tion (17). 
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